A Proof of Existence of Perturbed Steady Transonic Shocks via a Free Boundary Problem
نویسندگان
چکیده
We prove the existence of a solution of a free boundary problem for the transonic small-disturbance equation. The free boundary is the position of a transonic shock dividing two regions of smooth flow. Assuming inviscid, irrotational flow, as modeled by the transonic small-disturbance equation, the equation is hyperbolic upstream where the flow is supersonic, and elliptic in the downstream subsonic region. To study the stability of a uniform planar transonic shock, we consider perturbation by a steady C1+ε upstream disturbance. If the upstream disturbance is small in a C1 sense, then there is a steady solution in which the downstream flow and the transonic shock are Hölder-continuous perturbations of the uniform configuration. This result provides a new use of inviscid perturbation techniques to demonstrate, in two dimensions, the stability of transonic shock waves of the type that appear, for example, over the wing of an airplane, along an airfoil, or as bow shocks in a flow with a supersonic free-stream velocity. c © 2000 John Wiley & Sons, Inc.
منابع مشابه
Transonic Shocks in Multidimensional Divergent Nozzles
We establish existence, uniqueness and stability of transonic shocks for steady compressible non-isentropic potential flow system in a multidimensional divergent nozzle with an arbitrary smooth cross-section, for a prescribed exit pressure. The proof is based on solving a free boundary problem for a system of partial differential equations consisting of an elliptic equation and a transport equa...
متن کاملExistence and Stability of Multidimensional Transonic Flows through an Infinite Nozzle of Arbitrary Cross-sections
We establish the existence and stability of multidimensional transonic flows with transonic shocks through an infinite nozzle of arbitrary cross-sections, including a slowly varying de Lavel nozzle. The transonic flow is governed by the inviscid steady potential flow equation with supersonic upstream flow at the entrance, uniform subsonic downstream flow at the infinite exit, and the slip bound...
متن کاملExistence and Stability of Multidimensional Transonic Flows through an Infinite Nozzle of Arbitrary Cross-sections
We establish the existence and stability of multidimensional steady transonic flows with transonic shocks through an infinite nozzle of arbitrary cross-sections, including a slowly varying de Laval nozzle. The transonic flow is governed by the inviscid potential flow equation with supersonic upstream flow at the entrance, uniform subsonic downstream flow at the exit at infinity, and the slip bo...
متن کاملA Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).
This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...
متن کاملMultidimensional Transonic Shocks and Free Boundary Problems for Nonlinear Equations of Mixed Type
We are concerned with the existence and stability of multidimensional transonic shocks for the Euler equations for steady potential compressible fluids. The Euler equations, consisting of the conservation law of mass and the Bernoulli law for the velocity, can be written as the following second-order nonlinear equation of mixed elliptic-hyperbolic type for the velocity potential φ : Ω ⊂ R → R: ...
متن کامل